翻訳と辞書
Words near each other
・ Glagolitic Alley
・ Glagolitic alphabet
・ Glagolitic Mass
・ Glaichbea
・ Glaignes
・ Glainach-Ferlach Airport
・ Glaine-Montaigut
・ Glaire
・ Glais
・ Glaisdale
・ Glaisdale railway station
・ Glaisdale School
・ Glaisher
・ Glaisher (crater)
・ Glaisher's theorem
Glaisher–Kinkelin constant
・ Glaisnock River
・ Glaisnock Viaduct
・ Glaisnock Water
・ Glaister
・ Glaistig
・ Glaive
・ Glaiza de Castro
・ Glaiza Herradura
・ Glak
・ Glam
・ Glam (album)
・ GLAM (band)
・ GLAM (industry sector)
・ Glam (song)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Glaisher–Kinkelin constant : ウィキペディア英語版
Glaisher–Kinkelin constant
In mathematics, the Glaisher–Kinkelin constant or Glaisher's constant, typically denoted ''A'', is a mathematical constant, related to the K-function and the Barnes G-function. The constant appears in a number of sums and integrals, especially those involving Gamma functions and zeta functions. It is named after mathematicians James Whitbread Lee Glaisher and Hermann Kinkelin.
Its approximate value is:
:A\approx1.2824271291\dots   .
The Glaisher–Kinkelin constant A can be given by the limit:
:A=\lim_ \frac}
where K(n)=\prod_^ k^k is the K-function. This formula displays a similarity between ''A'' and which is perhaps best illustrated by noting Stirling's formula:
:\sqrt=\lim_ \frac}}
which shows that just as is obtained from approximation of the function \prod_^ k, ''A'' can also be obtained from a similar approximation to the function \prod_^ k^k.
An equivalent definition for ''A'' involving the Barnes G-function, given by G(n)=\prod_^k!=\frac where \Gamma(n) is the gamma function is:
:A=\lim_ \frac e^}.
The Glaisher–Kinkelin constant also appears in evaluations of the derivatives of the Riemann zeta function, such as:
:\zeta^(-1)=\frac-\ln A
:\sum_^\infty \frac=-\zeta^(2)=\frac\left(A-\gamma-\ln(2\pi)\right )
where \gamma is the Euler–Mascheroni constant. The latter formula leads directly to the following product found by Glaisher:
:\prod_^ k^}}=\left(\frac}\right)^}
The following are some integrals that involve this constant:
:\int_0^ \ln\Gamma(x)dx=\frac \ln A+\frac \ln 2+\frac \ln \pi
:\int_0^\infty \fracdx=\frac \zeta^(-1)=\frac-\frac\ln A
A series representation for this constant follows from a series for the Riemann zeta function given by Helmut Hasse.
:\ln A=\frac-\frac \sum_^\infty \frac \sum_^n \left(-1\right)^k \binom \left(k+1\right)^2 \ln(k+1)
==References==

*
* (Provides a variety of relationships.)
*
*

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Glaisher–Kinkelin constant」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.